7. Supervision and monitoring

- Monitoring the plan execution and reactive scheduling
- Monitoring the behaviour of the physical devices

"Batch processes and hybrid systems" aspect

Supervision and monitoring (1)

What is its purpose?

- **Implementing the manufacturing plan**
 - send the right commands at the exact moment as indicated by the plan
 - detect any deviation and implement reactivity

- **Monitoring the physical system**
 - update the current state of the system after each operation
 - detect any abnormal behaviour of the physical system and reactivity to failures
 - guarantee the security of humans, environment, machines

- **Supervises the preventive maintenance**
 - when machines are stopped for maintenance
Supervision and monitoring (2)

Architecture: real-time interface: management / control

Previsionnal plan

Management levels

Controlling the flow of products

Current state

Controlling the resources

Local control levels

Command

Supervision and monitoring (3)

Controlling the flow of products:

- **Requirement analysis**
 - what are the need of reactivity and flexibility?
 - what are the required pieces of information (indicators) for real time decision?

- **Design solutions for detecting deviations and decision aid**
 - how interconnecting previsional scheduling and real-time decision

- **Performance evaluation, validation of the solution**
 - tools for simulation, analysis of social organisations
Supervision and monitoring (4)

Controlling the resources:

- **Requirement analysis**
 - what are the faults, the errors, the failures, their causes, their effects?

- **Design solutions for detecting failures and decision aid**
 - detection, diagnosis, decision aid for recovery and compensation
 - models: structural, functional, behavioural

- **Security constraints, protection of humans & environment**
 - prevent the sequences of unexpected events leading to disasters
 - supervisory control (Ramage and Wonham)

Supervision and monitoring (5)

General control system architecture:

![Control System Architecture Diagram]

ICATPN, Advanced Tutorial "Petri nets and production systems", Lisboa, 23 June 1998
Model for Supervis. and monitor. (1)

Utilisation of the model (Petri net based model):

- **Representation of the current state of the manufacturing sys.**
 - machines and parts denoted by tokens, FMS state = current marking

- **Elaboration of list of possible decisions**
 - list of enabled transitions, tuples of tokens enabling a transition (coloured PN)
 - transitions in conflict, transitions which can be concurrently fired

- **Detection of any abnormal behaviour**
 - a system state change does not correspond to an enabled transition - no update
 - a sequence of the plan is inconsistent: corresponding trans. not enabled

Model for Supervis. and monitor. (2)

Utilisation of the model (Petri net based model):

- **Action = transition firing / only enabled + event or decision**
 - The token player for real-time decision and detection

- **Controlling the flow of products**
 - enabled transitions = what it is possible to do in the current state
 - plan = the desired decisions

- **Controlling the resources**
 - enabled transitions = normal next events (with respect to model of correct behaviour)
 - event = actual state change of the system
Model for Supervis. and monitor. (3)

The two roles of the token player:

- Constraints 1 plan (desired)
- Constraints 2 current state of phys. sys.
- Event (message from LAN)
- Fault
- Constraints current marking of Petri net model
- Real-time decision (control)
- Detection and update mechanism

From discrete event to hybrid (1)

Utilisation of the model (Petri net based model):

- The model is a pure discrete event model
 - The model is executed step by step, controlled by decisions and events
 - Events are uniquely determined by discrete states, no explicit time
 - Detect any inconsistency within message sequences (precedence relations) in the control system = a distributed control architecture

- Decision
- Constant state event
- Variable state event
- Time event
- Fill the reactor
- Heat until temp = param.
- Stir during 5 minutes
From discrete event to hybrid (2)

Utilisation of the model (Petri net based model):
- \(t_1 \): receive decision (management), check if enabled, send command "fill the reactor"
- \(t_2 \): receive event (from sensor or local cont.), check, send command "heat" (if plan ok)
- \(t_3 \): receive event (from sensor or loc. cont.), check if enabled, send "stir" (if plan ok)
- \(t_4 \): receive event (from real-time clock), check, send "stop"

![Diagram](Image)

From discrete event to hybrid (3)

Expliciting time:

- **To each activity (place) a min and a max duration is attached**
 - determined from the behaviour of the physical system

- **To each transition a time window is attached**
 - from the management level, earliest starting time, latest starting time

- **The model can be simulated**
 - mean value, stochastic, earliest time or shortest duration, latest time or longest dur.
From discrete event to hybrid (4)

Detection with time:

- **Detect inconsistency within sequence, and out of time window**
 - after trans. firing, compute current time interval, intersection with plan interval
 - at the occurrence of the event, check that it is in the time window
 - constraint propagation and analysis

- **Detection is asynchronous**
 - at each event, not at sampled time, not continuously
 - it checks that the system has a certain dynamics under a certain control between two configuration changes

From discrete event to hybrid (5)

Computing the time windows attached to transitions:

- t_1: plan specifies between date$_{t_1}$ and date$_{t_1}$ - fires at date$_{t_1}$
- p_3: from physical device duration between dur$_{t_1}$ and dur$_{t_2}$
- t_2: plan specifies between date$_{t_2}$ and date$_{t_3}$
- after firing t_1 derive interval $[\text{date}_{t_1} + \text{dur}_{t_1}, \text{date}_{t_1} + \text{dur}_{t_2}]$
- if disjoint from $[\text{date}_{t_1}, \text{date}_{t_2}]$ then error (inconsistency of plan)
- if date$_{t_1}$ out of $[\text{date}_{t_1}, \text{date}_{t_2}]$ then plan lack of flexibility
- if date$_{t_2}$ out of $[\text{date}_{t_1} + \text{dur}_{t_1}, \text{date}_{t_1} + \text{dur}_{t_2}]$ then physical system failure
From discrete event to hybrid (6)

Computing the time windows attached to places:

- **For time events (output transition)**
 - \(p_t \): defined at the level of the production route, or recipe: stir during 5 minutes

- **For constant state events (output transition)**
 - \(p_c \): the reactor is empty when \(t_1 \) is fired, the batch size is constant, the flow rate is constant, duration is the same for all batches

- **For variable state events (output transition)**
 - \(p_v \): the temperature to be reached depends on the batches, duration has to be computed on line

Variable state events:

- interval depends on the dynamics of continuous variables
- necessity of using a hybrid model (PN+DAE) for supervision