A Petri net based approach for the analysis of hybrid systems

Emilia Villani : Escola Politecnica da USP, Sao Paulo, Brazil
Jean-Claude Pascal : LAAS-CNRS, Toulouse, France
Paulo Eigi Miyagy : Escola Politecnica da USP, Sao Paulo, Brazil
Robert Valette : LAAS-CNRS, Toulouse, France

http://www.laas.fr/~robert

Objective

Define a method for property verification:

- Compatible with existing proof techniques
- Compatible with specification tools used in practice
- Not necessarily an automated approach (no decidability)
- Can be applied to relatively complex systems
- For hybrid systems
Example

Air conditioning system

Way to proceed (1)

"Divide and conquer"

- Proving by composing elementary proofs
- Start from an UML based object decomposition
- Discrete and continuous dynamics are separated
- Petri nets are used for the discrete aspect
 - Hybrid systems for which the discrete dynamics is significant
 - Concurrency = object independence
 - Objects with Petri nets / Petri nets with objects
Way to proceed (2)

Hybrid (dynamic) Objects:

- **Behavior**: A Petri net (discrete dynamics)
- **Methods**: Differential algebraic systems / RdP places (continuous dynamics) : methods phases
- **Interactions**: continuous / discrete (thresholds \(\Rightarrow\) transitions)
- **Communications**: Transitions available/required methods
- **Internal variables**: (continuous and discrete)

Object example

\[P_{16}: \quad \theta_{aux} = 0 \]
\[P_{17}: \quad \frac{\theta_{aux}}{1} = \left(1 - \frac{1}{\theta_{aux} + 1}\right) \left(\frac{2 \times m_{air}}{m_{air} + m_T}\right) \]

\(m_{air} \)

computed by object fan 2

\(Q_{ec} \)

used by object surgery room

\(t_17 : \quad \theta_{aux} = 0 \)
\(t_18 : \quad \theta_{aux} = 0 \)

\(t_17 \) et \(t_18 \) are two available methods (used by switcher)

Object "cooling device"
Two contradictory requirements

• A contradiction between:
 – A very large descriptive power
 – An easy analysis and formal proof

• No shared variables between the objects
 – Share constant parameters (at least variables which are constant during some phases)
 – Using continuous variables which are computed in other objects (no causal cycle)

• Rare communications which are statically defined
 – Only point to point, no broadcast, no dynamic definition of the receiver

The objects

• Switch/supervisory control
 – defines the configurations (fans 1 et 2, cooling device)

• Cooling device

• Fans (1 et 2)

• Surgery room
 – compute the temperature
Modular proof

List of necessary hypotheses

\[H_{el}, \ldots, H_{ej}, \ldots, H_{dk}, \ldots, D_{ml}, \ldots \vdash C \]

- \(H_{el} \): global environment, validity domain
- \(H_{ej} \): property of global used continuous variables (domains for ex.)
- \(H_{dk} \): property of global discrete dynamics
- \(D_{ml} \): deduction and proof techniques available in the studied object

=> Proof obligations for all the \(H \) (excepted \(H_{el} \))

Proof example 1

- Fan 2 has to be always in operation when the cooling device is on (corresponds to a \(H_{dj} \))
- A global Petri net encapsulating 3 objects is built
- Proof is based on a p-invariant (positive and negative weights)
Proof example 2 (1)

- T_f is reachable from T_0 before θ_i (object "surgery room")
- H_{ei}: Initial state: object "switch" is not commanded off
- H_{c1}: $\int Q_{ec} < K$ in "cooling device" (=> proof obligation)

Proof example 2 (2)

- C: $\int Q_{ec} < K$ in "cooling device"
- H_{ei}: Initial state: object "switch" is not commanded off
- m_{air} is a constant: proof 1 (H_d and proof obligation)
Conclusion

• Break down a complex proof into a set of simple proofs
• Allow addressing problems for which there is no decidability

BUT

• "Manual" proofs

• It is necessary to limit the descriptive power
 – Static transition merging
 – No causal cycle among the shared continuous variables